
Statistical Mechanics

Homework Assignment 9

Due 20 November 2002

Problem 9.1 – Arrhenius Behavior

A system’s energy is shown schematically in the up-
per figure at the right. The system is represented by
the dot, which sits near the bottom of a local energy
minimum. Over a peak in the energy lies a global
energy minimum, which is where the system “wants”
to be for maximum stability. To pass over the peak
the system must raise its energy by E above the local
minimum, after which it falls readily into the global
minimum. The system might be an electron-hole pair
in a semiconductor, in which case the low-energy state
could correspond to the electron and hole recombin-
ing to emit a visible photon, although the situation is
quite common and describes a great many important
systems. We can learn about the energy function by
measuring the dependence of the decay rate on the
temperature of the surroundings.
Frequently there is a “characteristic time” τ over
which the system’s energy can be expected to change.
If the system were an oscillator, this time would be
approximately its period. In a solid or molecule, it is
roughly the vibration period.
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On a time scale short compared to τ the system’s energy is approximately constant. Once
each time interval τ , on average, the system’s energy is “randomized.” Equivalently, once
each time interval τ the system tries to overcome the barrier, so that the attempt frequency
is γ = τ−1.

(a) Assuming that the probability of finding the system at energy ε is proportional to
the Boltzmann factor, and that the system attempts to overcome the barrier with
frequency γ, show that the average transition rate may be expressed

W ∝ γ exp(−E/kBT )

(b) The lower figure plots the transition rate as a function of inverse temperature. From
the plot and/or data shown, determine approximately the attempt frequency and the
barrier height. You may use Kaleidagraph, Origin, or some other fitting software if
you wish.
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Problem 9.2 – Ideal Gas Averages (Reif 7.19) A gas of molecules, each of mass m,
is in thermal equilibrium at the absolute temperature T . Denote the velocity of a molecule
by �v, its three cartesian components by vx, vy, and vz, and its speed by v. What are the
following mean values:

(a) vx

(b) v2
x

(c) v2vx

(d) v3
xvy

(e) (vx + bvy)2 where b is a constant

(f) v2
xv2

y

Reif adds the following endearing remark: If you need to calculate explicitly any integrals
in this problem, you are the kind of person who likes to turn cranks but does not think.
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Problem 9.3 – Maxwellian Distribution

(a) What is the standard deviation (width) of the Maxwellian distribution of speeds of a
classical gas in equilibrium at temperature T ? That is, what is

√
〈(v − 〈v〉)2〉?

(b) What is the width of the speed distribution of the atoms that emerge through a small
hole in the wall of an oven maintained at T ?

(c) In which of the two previous situations is the relative width of the distribution greater?
The relative width is the ratio of the width to the average speed.
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