Classical Mechanics
for the 19th century

T. Helliwell V. Sahakian
CONTENTS

2.2 Relativistic kinematics .. 58
 2.2.1 Proper time ... 58
 2.2.2 Four-velocity ... 62
Example 2-2: The transformation of ordinary velocity
Example 2-3: Four-velocity invariant

2.3 Relativistic dynamics ... 67
 2.3.1 Four-momentum ... 67
Example 2-4: Relativistic dispersion relation
Example 2-5: Decay into two particles
 2.3.2 Four-force ... 73
 2.3.3 Dynamics in practice 75
Example 2-6: Uniformly accelerated motion
Example 2-7: The Doppler effect
 2.3.4 Minkowski diagrams 80
Example 2-8: Time dilation
Example 2-9: Length contraction
Example 2-10: The twin paradox

3 The Variational Principle .. 101
 3.1 Fermat’s principle .. 101
 3.2 The calculus of variations 103
 3.3 Geodesics .. 111
Example 3-1: Geodesics on a plane
Example 3-2: Geodesics on a sphere
 3.4 Brachistochrone ... 114
Example 3-3: Fermat again
 3.5 Several Dependent Variables 120
Example 3-4: Geodesics in three dimensions
 3.6 Mechanics from a variational principle 122
 3.7 Motion in a uniform gravitational field 124
 3.8 Summary ... 129

4 Lagrangian mechanics ... 139
 4.1 The Lagrangian in Cartesian coordinates 139
 4.2 Hamilton’s principle 141
Example 4-1: A simple pendulum
Example 4-2: A bead sliding on a vertical helix
Example 4-3: Block on an inclined plane
6.3 Infinitesimal transformations .. 238
Example 6-3: Translations
Example 6-4: Rotations
Example 6-5: Lorentz transformations
6.4 Symmetry .. 242
Example 6-6: Space translations and momentum
Example 6-7: Time translation and the Hamiltonian
Example 6-8: Rotations and angular momentum
Example 6-9: Galilean Boosts
Example 6-10: Lorentz invariance
Example 6-11: Sculpting Lagrangians from symmetry
6.5 Noether’s theorem ... 243
Example 6-12: Space translations and momentum
Example 6-13: Time translation and the Hamiltonian
Example 6-14: Rotations and angular momentum
Example 6-15: Galilean Boosts
Example 6-16: Lorentz invariance
Example 6-17: Sculpting Lagrangians from symmetry
6.6 Some comments on symmetries ... 256

7 Gravitation and Central-force motion 265
7.1 Central forces .. 265
7.2 The two-body problem ...' 268
7.3 The effective potential energy .. 271
 7.3.1 Radial motion for the central-spring problem 273
 7.3.2 Radial motion in central gravity 274
7.4 The shape of central-force orbits .. 276
 7.4.1 Central spring-force orbits ... 276
 7.4.2 The shape of gravitational orbits 278
Example 7-1: Orbital geometry and orbital physics
7.5 Bertrand’s Theorem ... 284
7.6 Orbital dynamics ... 286
 7.6.1 Kepler’s second law .. 286
 7.6.2 Kepler’s third law .. 287
Example 7-2: Halley’s Comet
 7.6.3 Minimum-energy transfer orbits 289
Example 7-3: A voyage to Mars
Example 7-4: Gravitational assists

8 Electromagnetism 305
8.1 The Lorentz force law .. 305
Example 8-1: Fixing a gauge
8.2 The Lagrangian for electromagnetism 310
8.3 The two-body problem, once again 312
CONTENTS

8.4 Coulomb scattering .. 315
Example 8-2: Snell scattering
Example 8-3: Bubble chamber
Example 8-4: Ion trapping
8.6 Contact forces ... 326
Example 8-5: A microscopic model
Example 8-6: Rolling down the plane
Example 8-7: Stacking barrels
Example 8-8: On the rope

9 Accelerating frames .. 349
9.1 Linearly accelerating frames .. 349
Example 9-1: Pendulum in an accelerating spaceship
9.2 Rotating frames .. 353
Example 9-2: Throwing a ball in a rotating space colony
Example 9-3: Polar orbits around the Earth
9.3 Pseudoforces in rotating frames 356
Example 9-4: Rotating space colonies revisited
9.4 Centrifugal and Coriolis pseudoforces 360
Example 9-5: Coriolis pseudoforces in airflow
Example 9-6: Foucault’s pendulum
9.5 Pseudoforces on Earth ... 363
Example 9-7: Rendezvous with the space station?
Example 9-8: Losing a wrench?

10 Beyond The Basics II .. 388
10.1 Beyond newtonian gravity .. 388
Example 10-1: The precession of Mercury’s perihelion
10.1.1 Magnetic gravity ... 400
Example 10-2: Gravity inside the body of a star
Example 10-3: Cosmic string
10.2 Beyond the classical forces .. 403
10.3 Beyond deterministic forces 403
11 Hamiltonian formulation 409
 11.1 Legendre transformations 409
 Example 11-1: A simple Legendre transform
 11.2 Hamilton’s equations 414
 11.3 Phase Space 418
 Example 11-2: The simple harmonic oscillator
 Example 11-3: A bead on a parabolic wire
 Example 11-4: A charged particle in a uniform magnetic field
 11.4 Canonical transformations 423
 Example 11-5: Transforming the simple harmonic oscillator
 Example 11-6: Identities
 Example 11-7: Infinitesimal transformations and the Hamiltonian
 Example 11-8: Point transformations
 11.5 Poisson brackets 432
 Example 11-9: Position and momenta
 Example 11-10: The simple harmonic oscillator once again
 11.6 Liouville’s theorem 437

12 Rigid Body Dynamics 447
 12.1 Rigid Bodies 447
 12.2 Rotations 448
 12.3 Infinitesimal Rotations 450
 Example 12-1: Rotations in higher dimensions
 12.4 The Euler Angles 452
 Example 12-2: Angular velocity transformation
 12.5 Rotational kinetic energy 455
 Example 12-3: A hoop
 12.6 Potential Energy 460
 12.7 Angular Momentum 461
 12.8 Torque 463
 12.9 Summary 464
 12.10 Principal Axes 464
 Example 12-4: Fixed Axis Rotation
 Example 12-5: Principal Axis Shifts
 12.11 Torque Free Dynamics 468
 Example 12-6: Adding Angular Momenta
 12.12 Gyroscopes 471
CONTENTS

13 Complex systems 475
 13.1 Chaos 475

14 Small oscillations 479

15 Beyond The Basics III
 15.1 Beyond classical phase space 480
List of Figures

1.1 Various inertial frames in space. If one of these frames is inertial, any other frame moving at constant velocity relative to it is also inertial. ... 4
1.2 Two inertial frames, O and O', moving relative to one another along their mutual x or x' axes. 5
1.3 A bacterium in a fluid. What is its motion if it begins with velocity v_0 and then stops swimming? 10
1.4 Motion of an oscillator if it is (a) overdamped, (b) underdamped, or (c) critically damped, for the special case where the oscillator is released from rest ($v_0 = 0$) at some position x_0. 12
1.5 A system of particles, with each particle identified by a position vector r. .. 14
1.6 A collection of particles, each with a position vector r_i from a fixed origin. The center of mass R_{CM} is shown, and also the position vector r'_i of the ith particle measured from the center of mass. 15
1.7 The position vector for a particle. Angular momentum is always defined with respect to a chosen point from where the position vector originates. 18
1.8 A two-dimensional elliptical orbit of a ball subject to a Hooke’s law spring force, with one end of the spring fixed at the origin. 20
1.9 The work done by a force on a particle is its line integral along the path traced by the particle. 23
1.10 Newtonian gravity pulling a probe mass m towards a source mass M. .. 28
1.11 Potential energy functions for selected positive powers n. A possible energy E is drawn as a horizontal line, since E is constant. The difference between E and $U(x)$ at any point is the value of the kinetic energy T. The kinetic energy is zero at the turning points, where the E line intersects $U(x)$. Note that for $n = 1$ there are two turning points for $E > 0$, but for $n = 2$ there is only a single turning point.

2.1 Inertial frames \mathcal{O} and \mathcal{O}'.

2.2 Graph of the γ factor as a function of the relative velocity β. Note that $\gamma \approx 1$ for nonrelativistic particles, and $\gamma \to \infty$ as $\beta \to 1$.

2.3 The velocity v_x as a function of v'_x for fixed relative frame velocity $V = 0.5c$.

2.4 A particle of mass m_0 decays into two particles with masses m_1 and m_2. Both energy and momentum are conserved in the decay, but mass is not conserved in relativistic physics. That is, $m_0 \neq m_1 + m_2$.

2.5 Plots of relativistic constant-acceleration motion. (a) shows $v_x(t)$, demonstrating that $v_x(t) \to c$ as $t \to \infty$, i.e., the speed of light is a speed limit in Nature. The dashed line shows the incorrect Newtonian prediction. (b) shows the hyperbolic trajectory of the particle on a $ct-x$ graph. Once again the dashed trajectory is the Newtonian prediction.

2.6 Observer \mathcal{O}' shooting a laser towards observer \mathcal{O} while moving towards \mathcal{O}.

2.7 A point on a Minkowski diagram represents an event. A particle’s trajectory appears as a curve with a slope that exceeds unity everywhere.

2.8 Three events on a Minkowski diagram. Events A and B are timelike separated; A and C are lightlike separated; and B and C are spacelike separated.

2.9 The hyperbolic trajectory of a particle undergoing constant acceleration motion on a Minkowski diagram.

2.10 The grid lines of two observers labeling the same event on a spacetime Minkowski diagram.
2.11 The time dilation phenomenon. (a) Shows the scenario of a clock carried by observer O. (b) shows the case of a clock carried by O'. ... 85

2.12 The phenomenon of length contraction. (a) Shows the scenario of a meter stick carried by observer O'. (b) shows the case of a stick carried by O. ... 86

2.13 Minkowski diagrams of the twin paradox. (a) shows simultaneity lines according to John. During the first and third part of the trip, a time $2 \times T_1$ elapse on John’s clock; during the middle part, Jane is accelerating uniformly and the time elapsed is denoted by T_0(b) Shows simultaneity lines according to Jane, except for the two dotted lines sandwiching the accelerating segment. Jane’s x' axis is also shown for two instants in time. The segment labeled T_0 is excised away and borrowed from John’s perspective since Jane is a not an inertial frame during this period. T'_1 and T'_2 on the other hand can be computed from Jane’s perspective. Notice how Jane’s x' axis must smoothly flip around during the time interval T_0, as she turns around. Her simultaneity lines during this period will hence be distorted and require general relativity to fully unravel. ... 87

3.1 Light traveling by the least-time path between a and b, in which it moves partly through air and partly through a piece of glass. At the interface the relationship between the angle θ_1 in air, with index of refraction n_1, and the angle θ_2 in glass, with index of refraction n_2, is $n_1 \sin \theta_1 = n_2 \sin \theta_2$, known as Snell’s law. This phenomenon is readily verified by experiment. ... 102

3.2 A light ray from a star travels down through Earth’s atmosphere on its way to the ground. 104

3.3 A function of two variables $f(x_1, x_2)$ with a local minimum at point A, a local maximum at point B, and a saddle point at C. 105

3.4 Various paths $y(x)$ that can be used as input to the functional $I[f(x)]$. We look for that special path from which an arbitrary small displacement $\delta y(x)$ leaves the functional unchanged to linear order in $\delta y(x)$. Note that $\delta y(a) = \delta y(b) = 0$. ... 107

3.5 A discretization of a path. .. 108

3.6 The coordinates θ and φ on a sphere. 112
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7</td>
<td>(a) Great circles on a sphere are geodesics; (b) Two paths nearby the longer of the two great-circle routes of a path.</td>
<td>114</td>
</tr>
<tr>
<td>3.8</td>
<td>Possible least-time paths for a sliding block.</td>
<td>115</td>
</tr>
<tr>
<td>3.9</td>
<td>A cycloid. If in darkness you watch a wheel rolling along a level surface, with a lighted bulb attached to a point on the outer rim of the wheel, the bulb will trace out the shape of a cycloid. In the diagram the wheel is rolling along horizontally beneath the surface. For $x_b < (\pi/2)y_b$, the rail may look like the segment from a to b_1; for $x_b > (\pi/2)y_b$, the segment from a to b_2 would be needed.</td>
<td>117</td>
</tr>
<tr>
<td>3.10</td>
<td>(a) A light ray passing through a stack of atmospheric layers; (b) The same problem visualized as a sequence of adjacent slabs of air of different index of refraction.</td>
<td>119</td>
</tr>
<tr>
<td>3.11</td>
<td>Two spaceships, one accelerating in gravity-free space (a), and the other at rest on the ground (b). Neither observers in the accelerating ship nor those in the ship at rest on the ground can find out which ship they are in on the basis of any experiments carried out solely within their ship.</td>
<td>125</td>
</tr>
<tr>
<td>3.12</td>
<td>A laser beam travels from the bow to the stern of the accelerating ship.</td>
<td>126</td>
</tr>
<tr>
<td>4.1</td>
<td>Cartesian, cylindrical, and spherical coordinates</td>
<td>142</td>
</tr>
<tr>
<td>4.2</td>
<td>A bead sliding on a vertically-oriented helical wire</td>
<td>148</td>
</tr>
<tr>
<td>4.3</td>
<td>Block sliding down an inclined plane</td>
<td>148</td>
</tr>
<tr>
<td>4.4</td>
<td>Particle moving on a tabletop</td>
<td>150</td>
</tr>
<tr>
<td>4.5</td>
<td>The effective radial potential energy for a mass m moving with an effective potential energy $U_{\text{eff}} = (p^2)^2/2mr^2 + (1/2)kr^2$ for various values of p^2, m, and k.</td>
<td>153</td>
</tr>
<tr>
<td>4.6</td>
<td>Coordinates of a ball hanging on an unstretchable string</td>
<td>154</td>
</tr>
<tr>
<td>4.7</td>
<td>A sketch of the effective potential energy U_{eff} for a spherical pendulum. A ball at the minimum of U_{eff} is circling the vertical axis passing through the point of suspension, at constant θ. The fact that there is a potential energy minimum at some angle θ_0 means that if disturbed from this value the ball will oscillate back and forth about θ_0 as it orbits the vertical axis.</td>
<td>155</td>
</tr>
<tr>
<td>4.8</td>
<td>Two interacting beads on a one-dimensional frictionless rail. The interaction between the particles depends only on the distance between them.</td>
<td>157</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

4.9 A contraption of pulleys. We want to find the accelerations of all three weights. We assume that the pulleys have negligible mass so they have negligible kinetic and potential energies. 159

4.10 A block slides along an inclined plane. Both block and inclined plane are free to move along frictionless surfaces. 161

4.11 A bead slides without friction on a vertically-oriented parabolic wire that is forced to spin about its axis of symmetry. 166

4.12 The effective potential U_{eff} for the Hamiltonian of a bead on a rotating parabolic wire with $z = \alpha r^2$, depending upon whether the angular velocity ω is less than, greater than, or equal to $\omega_{\text{crit}} = \sqrt{2g \alpha}$. 168

4.13 An effective potential energy U_{eff} with a focus near a minimum. Such a point is a stable equilibrium point. The dotted parabola shows the leading approximation to the potential near its minimum. As the energy drains out, the system settles into its minimum with the final moments being well approximated with harmonic oscillatory dynamics. 172

4.14 The shape of the two-dimensional orbit of a particle subject to a central spring force, for small oscillations about the equilibrium radius. 174

5.1 A transverse small displacement of a string. 192

5.2 (a) A small slice of string; (b) Tension forces on the slice. 193

5.3 Two paths for waves from slit system to detectors. 198

5.4 (a) The relationship between $s_2 - s_1$, d, and θ; (b) The two-slit interference pattern. 199

5.5 (a) At very low intensity light, individual photons appear to land on the screen randomly; (b) as the intensity is cranked up, the interference pattern emerges. 200
5.6 Helium atoms with speeds between 2.1 and 2.2 km/s reaching the rear detectors, with both slits open. The detectors observe the arrival of individual atoms, but the distribution shows a clear interference pattern as we would expect for waves! We see how the interference pattern builds up one atom at a time. The first data set is taken after 5 minutes of counting, while the last is taken after 42 hours of counting. The experiments were carried out by Ch. Kurtsiefer, T. Pfau, and J. Mlynek; see their article in *Nature* 386, 150 (1997). (The “hotspot” in the data arises from an enhanced dark count due to an impurity in the microchannel plate detector.)

5.7 A phasor $z(t_0)e^{i\phi} \equiv |z(t_0)|e^{i(\phi+\phi_0)}$ drawn in the complex plane. The real axis is horizontal and the imaginary axis is vertical. The absolute length of the phasor is $|z(t_0)|$ and the angle between the phasor and the real axis is the phase $(\phi+\phi_0)$, where ϕ_0 is the phase of $z(t_0)$ alone.

5.8 The sum of two individual phasors with the same magnitudes $|z(t_0)|$ but different phases. The result is a phasor that extends from the tail of the first to the tip of the second, as in vector addition. The difference in their angles in the complex plane is the difference in their phase angles. Shown are examples with phase differences equal to (a) zero (b) 45° (c) 90° (d) 135° (e) 180°

5.9 Two paths from a source to a detector.

5.10 High-velocity helium atoms, with speeds above 30 km/s, reaching the rear detectors, with both slits open. The detectors observe the arrival of individual atoms, and the distribution is what we would expect for classical particles. Experiments carried out by Ch. Kurtsiefer, T. Pfau, and J. Mlynek, *Nature* 386.

5.11 (a) Path length as a function of position y within the slit. (b) The single-slit diffraction pattern.

5.12 The double slit, with a screen at distance D. We can view the intensity on the screen as a function of the transverse distance x.
5.13 Interference/diffraction patterns for a double slit with $a = d/4$ and $D = 1000d$. The diffraction curves, shown in dashed lines, serve as envelopes for the more rapidly oscillating interference pattern. (a) The pattern in the case $d = 0.1x_{1/2}$, where $x_{1/2}$ is the distance on the detecting plane between the center and the first minimum of the diffraction envelope. The diffraction curves of the two slits strongly overlap in this case, giving in effect a single diffraction envelope. (b) The pattern in the case $d = 2x_{1/2}$, showing that the two diffraction patterns have become separated, with the first minimum due to each slit at the same location in the center. This case corresponds to a wavelength smaller by a factor of 20 than the pattern shown in (a). .. 213

5.14 The sum of a large number of phasors (a) that are about the same (b) that differ by constant amounts. 215

5.15 A class of kinked paths between a source and detector. The straight line is the shortest path, and the midpoint of the others is a distance $D = |n|D_0$ from the straight line, where $(n = \pm 1, \pm 2, ...)$... 217

5.16 Phasors up to $n = \pm 25$. The more distant paths wind up in spirals, contributing very little to the overall phasor sum. . . 218

6.1 An elliptical galaxy (NGC 1132) pulling on a star at the outer fringes. ... 235

6.2 The two types of transformations considered: direct on the left, indirect on the right. ... 239

6.3 Sliding pendulum. ... 261

7.1 Newtonian gravity pulling a probe mass m_2 towards a source mass m_1. ... 266

7.2 Angular momentum conservation and the planar nature of central force orbits. .. 267

7.3 The classical two-body problem in physics. 268

7.4 The effective potential for the central-spring potential. 273

7.5 The effective gravitational potential. 275

7.6 Elliptical orbits due to a central spring force $F = -kr$. 278

7.7 Conic sections: circles, ellipses, parabolas, and hyperbolas. . 281
LIST OF FIGURES

7.8 An elliptical gravitational orbit, showing the foci, the semi-major axis \(a \), semiminor axis \(b \), the eccentricity \(\epsilon \), and the periapse and apoapse. ... 282
7.9 Parabolic and hyperbolic orbits ... 283
7.10 The four types of gravitational orbits 285
7.11 The area of a thin pie slice .. 287
7.12 The orbit of Halley’s comet ... 289
7.13 A minimum-energy transfer orbit to an outer planet. 290
7.14 Insertion from a parking orbit into the transfer orbit. 292
7.15 A spacecraft flies by Jupiter, in the reference frames of
(a) Jupiter (b) the Sun .. 295

8.1 The electrostatic Coulomb force between two charged particles. 307
8.2 Hyperbolic trajectory of a probe scattering off a charged target. 315
8.3 Definition of the scattering cross section in terms of change in
impact area \(2\pi bdb \) and scattering area \(2\pi \sin \Theta d\Theta \) on the unit
sphere centered at the target. ... 317
8.4 The Rutherford scattering cross section. The graph shows
\(\log \sigma(\Theta) \) as a function of \(\log \Theta \) superimposed on actual data
in scattering of protons off gold atoms. 318
8.5 Scattering of light off a reflecting bead. 318
8.6 (a) Top view of a charged particle in a uniform magnetic field;
(b) The helical trajectory of the charged particle. 321
8.7 ... 323
8.8 The effective Penning potential. At the minimum, we have a
stable circular trajectory. In general however, the radial extent
will oscillate with frequency \(\omega_0 \). 325
8.9 The full trajectory of an ion in a Penning trap. A vertical oscil-
lation along the \(z \) axis with frequency \(\omega_z \) is superimposed onto
an fast oscillation of frequency \(\omega_0 \), while the particle traces a
large circle with characteristic frequency \(\omega_m \). 327
8.10 The electric field from a neutral atom leaks out in a dipole
pattern due to small asymmetries in the charge distribution
of the atom. .. 328
8.11 A layer of perfectly aligned dipole at the surface of a floor on
which a block is to rest. .. 329
8.12 A hoop rolling down an inclined plane without slipping. 335
8.13 Two barrels stacked on top of each other. The lower barrel is stationary, while the upper one rolls down without slipping. 337
8.14 A pendulum with a single constraint given by the fixed length of the rope. 340

9.1 A ball is thrown sideways in an accelerating spaceship (a) as seen by observers within the ship (b) as seen by a hypothetical inertial observer outside the ship 351
9.2 A simple pendulum in an accelerating spaceship 352
9.3 spacecolony living on the inside rim of a rotating cylindrical space colony 354
9.4 Throwing a ball in a rotating space colony (a) From the point of view of an external inertial observer (b) From the point of view of a colonist 356
9.5 Path of a satellite orbiting Earth, in Earth’s rest frame. Dashed lines represent the equator and longitude lines. 357
9.6 A vector that is constant in a rotating frame changes in an inertial frame: (a) simple two dimensional case; (b) three dimensional general case. 358
9.7 (a) The angular velocity vector for a rotating frame (b) the triple cross product $\mathbf{\omega} \times \mathbf{\omega} \times \mathbf{r}$ 361
9.8 Stroboscopic pictures of a ball thrown from the center of a rotating space colony (a) as seen in an inertial frame (b) as seen in the colony 363
9.9 The length of the day relatively to the stars (sidereal time) is slightly longer than the length of the day relative to the Sun. 364
9.10 The Earth bulges at the equator due to its rotation, which produces a centrifugal pseudoforce in the rotating frame. A plumb bob hanging near the surface experiences both gravitation and the centrifugal pseudoforce. 365
9.11 (a) A set of three Cartesian coordinates placed on the Earth (b) The horizontal coordinates x and y. 366
9.12 Inflowing air develops a counterclockwise rotation in the northern hemisphere 368
9.13 Foucault’s pendulum at the North Pole 369
9.14 Foucault’s pendulum 370
9.15 (a) A spacecraft trying to rendezvous and dock with a space
station in circular orbit around the Earth. (b) A stranded
astronaut trying to return to the space station by throwing a
wrench. (c) An astronaut accidentally lets a wrench escape
from the ISS. What is its subsequent trajectory? 372
9.16 Coordinates of the space station and object 373
9.17 The spacecraft trajectory in the nonrotating frame. 377
9.18 Rendezvous with the ISS? The bizarre trajectory, after start-
ing off in the desired direction. 378
9.19 Rendezvous with the ISS? The initial boost. 378
9.20 Trajectory of a wrench in the rotating frame in which the ISS
is at rest. The wrench is thrown from the ISS vertically, away
from the Earth. It returns like a boomerang. 379
9.21 Trajectory of the wrench in the nonrotating frame where the
ISS is in circular orbit around the Earth. 380
9.22 (a) a balloon in a car (b) a cork in a fishtank 381
9.23 Tilt of the northward-flowing gulf stream surface, looking north386
10.1 An ant colony measures the radius and circumference of a
turntable. 390
10.2 Non-Euclidean geometry: circumferences on a sphere. 391
10.3 Successive light rays sent to a clock at altitude \(h \) from a clock
on the ground. 393
10.4 Effective potential for the Schwarzschild geometry. 397
10.5 A gaussian surface probing the gravity inside a star of uniform
volume mass density. 402
10.6 An infinite linear mass distribution moves upward with speed
\(V \) while a probe of mass \(M \) ventures nearby. 404

11.1 (a) Two functions \(A(x, y) \), differing by a shift, whose naive
transformation through \(y \to z \) lead to the same transformed
function \(B(x, z) \); (b) The envelope of \(A(x, y) \) consisting of
slopes and intercepts completely describe the shape of \(A(x, y) \). 411
11.2 The Legendre transformation of \(A(x, y) \) as \(B(x, z) \). 412
11.3 The two dimensional cross section of a phase space for a sys-
tem. The flow lines depict Hamiltonian time evolution. 418
11.4 The phase space of the one dimensional simple harmonic os-
cillator. 420
11.5 The phase space of the one dimensional particle on a parabola problem. 422
11.6 The flow lines in the x-p_x cross section of phase space for a charged particle in a uniform magnetic field. 424
11.7 (a) The flow lines in a given phase space; (b) The same flow lines as described by transformation coordinates and momenta. 424
11.8 The transformation of phase space under a canonical transformation. Volume elements may get distorted in shape, but the volume of each element must remain unchanged. 432
11.9 A depiction of Liouville’s theorem: the density of states of a system evolves in phase space in such as way that its total time derivative is zero. 438
LIST OF FIGURES